
© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of other

ATPESC
(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP*)
James Reinders, Intel
August 4, 2014, Pheasant Run, St Charles, IL

10:30 – 11:15

We resume @ 10:30am

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

ATPESC
(Argonne Training Program on Extreme-Scale Computing)

Vectorization (SIMD), and
scaling (TBB and OpenMP*)
James Reinders, Intel
August 4, 2014, Pheasant Run, St Charles, IL

10:30 – 11:15

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

What Maximum Performance Might
Look Like With A Speed Governor

Using A Single Vector Lane Can Inhibit Performance

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

What Maximum Performance Can Look Like With Permission
To Use All Lanes And Resources

Modernized Software Delivers Significant Performance Advantages

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Following up on “data parallelism is KEY”

• dive into the topic of vectorization

• explicit vectorization in OpenMP 4.0

• consider a few other programming considerations along the way

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Summary

7

We need to embrace explicit vectorization
in our programming.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro8

How many of us here today…

have ever worried about vectorization for

your application?

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro9

Shouldn’t we solve with better tools?

What is vectorization?

Could we just ignore it?

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vectors Instructions (SIMD instructions)
Make things Faster

(that’s the premise)

10

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Up to 4x Performance
with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

Higher performance for the most demanding computational tasks

- Significant leap to 512-bit SIMD support for processors

- Intel® Compilers and Intel® Math Kernel Library
include AVX-512 support

- Strong compatibility with AVX

- Added EVEX prefix enables additional functionality

- Appears first in future Intel® Xeon Phi™ coprocessor,
code named Knights Landing

x

x

x

11

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Performance with Intel CilkPlusPerformance with Explicit Vectorization

Configuration: Intel® Core™ i7 CPU X980 system (6 cores with Hyper-Threading On), running at 3.33GHz, with 4.0GB RAM, 12M smart cache, 64-bit Windows Server 2008 R2

Enterprise SP1. For more information go to http://www.intel.com/performance

12

http://www.intel.com/performance

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro13

Parallel first

Vectorize second

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

What is a Vector?

14

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vector of numbers

15

[]

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vector addition

16

[]
[]
[]

+
=

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

…and Vector multiplication

17

[]
[]
[]

[]
[]
[]

+
=

×

=

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

An example

18

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

19

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

Loop:

1. LOAD a[i] -> Ra

2. LOAD b[i] -> Rb

3. ADD Ra, Rb -> Rc

4. STORE Rc -> c[i]

5. ADD i + 1 -> i
20

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

Loop:

1. LOAD a[i] -> Ra

2. LOAD b[i] -> Rb

3. ADD Ra, Rb -> Rc

4. STORE Rc -> c[i]

5. ADD i + 1 -> i

Loop:

1. LOADv4 a[i:i+3] -> Rva

2. LOADv4 b[i:i+3] -> Rvb

3. ADDv4 Rva, Rvb -> Rvc

4. STOREv4 Rvc -> c[i:i+3]

5. ADD i + 4 -> i
21

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c,

float *a,

float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

Loop:

1. LOAD a[i] -> Ra

2. LOAD b[i] -> Rb

3. ADD Ra, Rb -> Rc

4. STORE Rc -> c[i]

5. ADD i + 1 -> i

We call this “vectorization”

Loop:

1. LOADv4 a[i:i+3] -> Rva

2. LOADv4 b[i:i+3] -> Rvb

3. ADDv4 Rva, Rvb -> Rvc

4. STOREv4 Rvc -> c[i:i+3]

5. ADD i + 4 -> i
22

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c, float *a, float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

23

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vector data operations:
data operations done in parallel
void v_add (float *c, float *a, float *b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

PROBLEM:

This LOOP is NOT LEGAL to (automatically) VECTORIZE

in C / C++ (without more information).

Arrays not really in the language

Pointers are, evil pointers!

24

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choice 1:
use a compiler switch for
auto-vectorization

(and hope it vectorizes)

25

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choice 2:
give your compiler hints

(and hope it vectorizes)

26

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

C99 restrict keyword
void v_add (float *restrict c,

float *restrict a,

float *restrict b)

{

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

27

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

IVDEP (ignore assumed vector dependencies)

void v_add (float *c,

float *a,

float *b)

{

#pragma ivdep

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

28

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Choice 3:
code explicitly for vectors

(mandatory vectorization)

29

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP* 4.0: #pragma omp simd

void v_add (float *c,

float *a,

float *b)

{

#pragma omp simd

for (int i=0; i<= MAX; i++)

c[i]=a[i]+b[i];

}

30

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP* 4.0: #pragma omp declare simd

#pragma omp declare simd

void v1_add (float *c,

float *a,

float *b)

{

*c=*a+*b;

}

31

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

SIMD instruction intrinsics
void v_add (float *c,

float *a,

float *b)

{
__m128* pSrc1 = (__m128*) a;

__m128* pSrc2 = (__m128*) b;

__m128* pDest = (__m128*) c;

for (int i=0; i<= MAX/4; i++)

*pDest++ = _mm_add_ps(*pSrc1++, *pSrc2++);

}

32

Hard coded to 4 wide !

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

array operations (Cilk™ Plus)
void v_add (float *c,

float *a,

float *b)

{

c[0:MAX]=a[0:MAX]+b[0:MAX];

}

Challenge: long vector slices
can cause cache issues; fix is to
keep vector slices short.

Cilk™ Plus is supported

in Intel compilers, and

gcc (4.9).

33

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vectorization solutions
1. auto-vectorization (use a compiler switch and hope it vectorizes)

 sequential languages and practices gets in the way
2. give your compiler hints and hope it vectorizes

 C99 restrict (implied in FORTRAN since 1956)
 #pragma ivdep

3. code explicitly
 OpenMP 4.0 #pragma omp simd
 Cilk™ Plus array notations
 SIMD instruction intrinsics
 Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA

kernel functions

34

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

vectorization solutions
1. auto-vectorization (use a compiler switch and hope it vectorizes)

 sequential languages and practices gets in the way
2. give your compiler hints and hope it vectorizes

 C99 restrict (implied in FORTRAN since 1956)
 #pragma ivdep

3. code explicitly
 OpenMP 4.0 #pragma omp simd
 Cilk™ Plus array notations
 SIMD instruction intrinsics
 Kernels: OpenMP 4.0 #pragma omp declare simd; OpenCL; CUDA

kernel functions

35

Best at being

Reliable, predictable and portable

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Explicit parallelism

36

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

parallelization

37

Try auto-parallel capability:
-parallel (Linux* or OS X*)
-Qparallel (Windows*)

Or explicitly use…
Fortran directive (!DIR$ PARALLEL)
C pragma (#pragma parallel)
Intel® Threading Building Blocks (TBB)

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

parallelization

38

Try auto-parallel capability:

-parallel (Linux or OS X*)

-Qparallel (Windows)

Or explicitly use…

OpenMP

Intel® Threading Building Blocks (TBB)

Best at being
Reliable, predictable and portable

c$OMP PARALLEL DO

DO I=1,N B(I) = (A(I) + A(I-1)) / 2.0

END DO

c$OMP END PARALLEL DO

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP 4.0

39

Based on a proposal from Intel based on

customer success with the

Intel® Cilk™ Plus features in Intel compilers.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

OpenMP 4.0

40

Based on a proposal from Intel based on

customer success with the

Intel® Cilk™ Plus features in Intel compilers.

#pragma omp simd reduction(+:val) reduction(+:val2)

for(int pos = 0; pos < RAND_N; pos++) {

float callValue=

expectedCall(Sval,Xval,MuByT,VBySqrtT,l_Random[pos]);

val += callValue;

val2 += callValue * callValue;

}

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro41

Note: per the OpenMP standard, the “for-loop” must have canonical loop form.

YES – VECTORIZE THIS !!!(OpenMP 4.0)

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro42

Make VECTOR versions of this function.
(OpenMP 4.0)

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro43

Parallelize and Vectorize.

(OpenMP 4.0)

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro44

You like

directives?
Use

OpenMP 4.0

You are

not alone.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

• Keyword versions of SIMD pragmas added:

_Simd, _Safelen, _Reduction

• __intel_simd_lane() intrinsic for SIMD enabled functions

45

for your consideration:

Intel 15.0 Compilers (in beta now) support

keywords as an alternative

Keywords / library interfaces being discussed for SIMD constructs in C and C++ standards

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

History of Intel vector instructions

46

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Intel Instruction Set Vector Extensions from 1997-2008

70 new
instructions

128 bits

4 single-
precision vector
FP

scalar FP
instructions

cacheability
instructions

control &
conversion
instructions

media
extensions

1998

Intel®

SSE

144 new
instructions

128 bits

2 double-
precision vector
FP

8/16/32/64
vector integer

128-bit integer

memory &
power
management

1999

Intel®

SSE2

1999

Intel®

SSE2

13 new
instructions

128 bits

FP vector
calculation

x87 integer
conversion

128-bit integer
unaligned load

thread sync.

2004

Intel®

SSE3

2004

Intel®

SSE3

32 new
instructions

128 bits

enhanced
packed integer
calculation

2006

Intel

SSSE3

2006

Intel®

SSSE3

47 new
instructions

128 bits

packed integer
calculation &
conversion

better
vectorization
by compiler

load with
streaming hint

2007

Intel®

SSE4.1

2007

Intel®

SSE4.1

2008

Intel®

SSE4.2

7 new
instructions

128 bits

string (XML)
processing

POP-Count

CRC32

2008

Intel®

SSE4.2

57 new
instructions

64 bits

Overload FP
stack

Integer only

media
extensions

1997

Intel®

MMX™

technology

47

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Intel Instruction Set Vector Extensions since 2011

Promotion of
128 bit FP
vector
instructions to
256 bit

2011

Intel®

AVX

7 new
instructions

16 bit FP
support

RDRAND

…

2012

“AVX-1.5”

Promotion of
integer
instruction to
256 bit

- FMA

- Gather

- TSX/RTM

2013

Intel®

AVX-2

TBD

Intel®

AVX-512

Promotion of
vector
instructions to
512 bits

Xeon Phi: FI,
CDI, ERI, PFI

Xeon: FI, CDI,
BWI, DQI, VLE

2011

Co-processor only

512

Coprocessor
predecessor to
AVX-512. New
512 bit vector
instructions for
MIC
architecture,
binary compt.
not supported
by processors –
mostly source
compatible with
AVX-512

48

Reinders blogs announced –

July 2013, and June 2014.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

(x4)

(x2)

(x8) (x4)

(x16) (x8)

49

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Growth is in vector instructions

50

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

v
e

ct
o

r

sc
a

la
r

Disclaimer: Counting/attributing instructions is in inexact science. The

exact numbers are easily debated, the trend is quite real regardless.

1K

2K

3K

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Motivation for AVX-512 Conflict Detection
Sparse computations are common in HPC, but hard to vectorize due to
race conditions

Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence

gather-op-scatter with vector of indexes that contain conflicts

51

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Motivation for AVX-512 Conflict Detection
Sparse computations are common in HPC, but hard to vectorize due to
race conditions

Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence

gather-op-scatter with vector of indexes that contain conflicts

52

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Conflict Detection Instructions in AVX-512
improve vectorization!
VPCONFLICT instruction detects elements with
previous conflicts in a vector of indexes

 Allows to generate a mask with a subset of elements that
are guaranteed to be conflict free

 The computation loop can be re-executed with the remaining elements until all the indexes have
been operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still remaining
do {

curr_elem = get_conflict_free_subset(index, pending_elem)
old_val = vgather {curr_elem} A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

CDI instr.
VPCONFLICT{D,Q} zmm1{k1}, zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

for illustration: this not even the fastest version

53

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

-vec-report

54

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

“Dear compiler, did you vectorize my loop?”
We heard your feedback…...

55

-vec-report output was hard to understand;

Messages were too cryptic to understand;

Information about one loop showing up at many places of report;

Was easy to be confused about multiple versions of one loop created
by the compiler.

We couldn’t do everything you asked,
but here are the

improvements made for 15.0 compiler.

Expect more changes to come,

during beta and in future versions.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

 Old functionality implemented under -opt-report, -vec-report,
-openmp-report, -par-report
replaced by unified -opt-report compiler options
 [vec,openmp,par]–report options deprecated and map to equivalent opt-report-phase

 Can still select phase with -opt-report-phase option.
For example, to only get vectorization reports,
use -opt-report-phase=vec

 Output now defaults to a <name>.optrpt file where <name>
corresponds to the output object name. This can be changed with
-opt-report-file=[<name>|stdout|stderr]

 Windows*: /Qopt-report, /Qopt-report-phase=<phase> etc.
 Optimization report integration with Microsoft* Visual Studio

planned to appear in beta update 1

Optimization Report Redesign

56

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Summary

57

We need to embrace explicit vectorization
in our programming.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro58

Vectorization today uses

“Not your father’s vectorizer”

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vectorization solved in 1978?

59

Communications of the ACM

The CRAY-1 computer system

By Richard M. Russell

Cray Research, Inc., Minneapolis, MN

Communications of the ACM,

January 1978 (Vol. 21 No. 1), Pages 63-72

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vectorization solved in 1978?

60

Communications of the ACM

The CRAY-1 computer system

By Richard M. Russell

Cray Research, Inc., Minneapolis, MN

Communications of the ACM,

January 1978 (Vol. 21 No. 1), Pages 63-72

Communications of the ACM

October 1978 (Vol. 21, No. 10), Pages 806-820
Communications of the ACM

October 1978 (Vol. 21, No. 10), Pages 806-820

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

c

c***

c*** KERNEL 1 HYDRO FRAGMENT

c***

c

cdir$ ivdep

1001 DO 1 k = 1,n

1 X(k)= Q + Y(k) * (R * ZX(k+10) + T * ZX(k+11))

c

Livermore loop #1

Vector code generation straightforward

Emphasis on analysis and disambiguation

61

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

It’s messy today

62

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

DO 1 k = 1,n

1 A(k) = B(k) + C(k)

Vector code generation was straightforward

Emphasis on analysis and disambiguation

Vectorization yesterday

63

K=1

Ld C(1)

Ld B(1)

Add

St A(1)

K=2

Ld C(2)

Ld B(2)

Add

St A(2)

K=1..2

Ld C(1)

Ld B(1)

Add

St A(1)

Ld C(2)

Ld B(2)

Add

St A(2)

Scalar code Vector code

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Vectorization today

64

Vector code generation has become a more difficult problem

Increasing need for user guided explicit vectorization

Explicit vectorization maps threaded execution to simd hardware

Two fundamental problems
Data divergence
Control divergence

p=0

2
Are all
lanes done?

p=0..1

Function call

x1

y1
Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)
for(p=0; p<N; p++) {

// Blue work
if(…) {

// Green work
} else {

// Red work
}
while(…) {

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=1

3

Function call

x2

y2

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

#pragma omp simd

for (x = 0; x < w; x++) {

for (v = 0; v < nsubsamples; v++) {

for (u = 0; u < nsubsamples; u++) {

float px = (x + (u / (float)nsubsamples) - (w / 2.0f)) / (w / 2.0f);

Ray ray; Isect isect;

….

ray.dir.x = px;

….

vnormalize(&(ray.dir));

……

ray_sphere_intersect(&isect, &ray, &spheres[0]);

……

ray_plane_intersect (&isect, &ray, &plane);

if (isect.hit) {

vec col;

ambient_occlusion_simd(&col, &isect);

fimg[3 * (y * w + x) + 0] += col.x;

……..

}

}

}

}

Loops Function calls

Conditionals

Conditional

Function calls

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Motivational Example

66

//foo.c
float in_vals[];
for(int x = 0; x < Width; ++x) {

count[x] = lednam(in_vals[x]);
}

What are the simplest changes required for the program to utilize today’s
multicore and simd hardware?

//bar.c
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT

float z = 1.0f;
int iters = 0;
while (z < LIMIT) {

z = z * c; iters++;
}
return iters;

}

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro67

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {

count[x] = lednam(in_vals[x]);
}

x = 0 x = 1 x = 2 x = 3

float in_vals[];
#pragma omp parallel for simd
for(int x = 0; x < Width; ++x) {

count[x] = lednam(in_vals[x]);
}

float in_vals[];

for(int x = 0; x < Width; ++x) {
count[x] = lednam(in_vals[x]);

}

z = z * c

z = z * c

iters = 2

z = z * c

z = z * c

….

iters = 23

z = z * c

z = z * c

……….……...

iters = 255

z = z * c

z = z * c

……..

iters = 37

#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT

float z = 1.0f; int iters = 0;
while (z < LIMIT) {

z = z * c; iters++;
}
return iters;

}

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Mandelbrot

68

#pragma omp parallel for
for (int y = 0; y < ImageHeight; ++y) {

#pragma omp simd
for (int x = 0; x < ImageWidth; ++x) {

count[y][x] = mandel(in_vals[y][x]);
}

}

Intel Xeon Phi™ system, Linux64, 61 cores running 244 threads
at 1GHz, 32 KB L1, 512 KB L2 per core. Intel C/C++ Compiler
1internal build.

Mandelbrot Normalized Speedup with OpenMP* on Intel® Xeon Phi™ Coprocessor

#pragma omp declare simd
int mandel(fcomplex c)
{ // Computes number of iterations for c to escape

fcomplex z = c;
for (int iters=0; (cabsf(z) < 2.0f) && (iters < LIMIT); iters++) {

z = z * z + c;
}
return iters;

}

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Summary

69

We need to embrace explicit vectorization
in our programming.

But, generally use parallelism first
(tasks, threads, MPI, etc.)

©2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Questions?

james.r.reinders@intel.com

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

James Reinders. Parallel Programming Evangelist. Intel.

James is involved in multiple engineering, research and educational efforts to increase
use of parallel programming throughout the industry. He joined Intel Corporation in
1989, and has contributed to numerous projects including the world's first TeraFLOP/s
supercomputer (ASCI Red) and the world's first TeraFLOP/s microprocessor (Intel® Xeon
Phi™ coprocessor). James been an author on numerous technical books, including
VTune™ Performance Analyzer Essentials (Intel Press, 2005), Intel® Threading Building
Blocks (O'Reilly Media, 2007), Structured Parallel Programming (Morgan Kaufmann,
2012), Intel® Xeon Phi™ Coprocessor High Performance Programming (Morgan
Kaufmann, 2013), and Multithreading for Visual Effects (A K Peters/CRC Press, 2014).
James is working on a project to publish a book of programming examples featuring Intel
Xeon Phi programming scheduled to be published in late 2014.

© 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Cilk, VTune , Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the pro

Legal Disclaimer & Optimization Notice

72

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks
of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the

availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations

in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets

covered by this notice.

Notice revision #20110804

